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A Study o f  the Adequacy o f  Quasi-Geostrophic Dynamics f o r  
Modeling the E f f e c t  o f  Fronta l  Cyclones on the  Larger Scale Flow 

Abstract  

The purpose o f  t h i s  work i s  t o  study the evo lu t i on  o f  i n d i v i d u a l  

cyclone waves i n  order  t o  see how w e l l  quasi-geostrophic (QG) dynamics 

can s imulate the  behavior of p r im t i v e  equations (PE) dynamics. 

work i s  an extension o f  a s i m i l a r  study (Mudrick, 1982); emphasis i s  

placed here on adding a f r o n t a l  zone and o ther  more d iverse  features t o  

the bas ic  s ta tes  used. 

This 

I n  add i t ion ,  sets  o f  PE in tegrat ions,  w i t h  and w i thout  f r i c t i o n ,  are 

used t o  study the  formation o f  surface occluded f r o n t s  w i t h i n  the  

evol  v i  ng cyclones. 

Resul ts o f  the study are summarized a t  the beginning o f  t h i s  repor t .  

Papers publ ished under t h i s  grant:  

Mudrick, S.E., 1987: Numerical Simulat ion of Polar  Lows and Comma Clouds 

Using Simple Dry Models. Mon. Wea. Rev. 115, i n  press. ---- 
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Summary of  Results 

A major thrust of this study was the attempt t o  add f ronta l  zones t o  

the basic states used fo r  PE/QG comparisons o f  evolving cyclone waves. 

The attempt was only partially successful. Three different situations 

were used within which frontal zones were present; only i n  one case d i d  a 

frontal wave cyclone form in the desired manner. Other basic states,  

however, possessing a greater diversity from those basic states used in 

Mudrick (1982), of which this study i s  an extension, were used here. 

W i t h  respect t o  the frictionless PE/QG comparisons: three o u t  of 

four additional basic states provided good results. These results are 

similar t o  those described in Mudrick (1982). 

1) The PE cyclone waves stabilize the lower troposphere while the QG 

model evolutions cannot. 

2 )  

gross energetics, w i t h  the QG cycles generally lasting longer. 

3 )  

corresponding PE fluxes; the heat fluxes are more similar t h a n  are  the PE 

vs QG momentum fluxes. 

Both PE and QG cyclones evolve t h r o u g h  l i f e  cycles 8s seen in the 

The QG l i f e  cycle averaged eddy heat fluxes are similar t o  the 

There i s  more diversity in the PE/QG comparisons than was found in 

the Mudrick (1982) study. The QG fluxes are weaker t h a n  the corresponding 

PE fluxes i n  one case, b u t  are stronger t h a n  the PE fluxes in two other 

cases (much stronger in one case). In Mudrick (1982) they were weaker 

t h a n  the PE fluxes. 

These results suggest, a long  with the findings of MacVean and James 

(1986), that  our confidence i n  the abil i ty of the QG dynamics t o  simulate 

the PE dynamics should be reduced, compared t o  the findings of the 

Mudrick (1982) study. 
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W i t h  respect t o  the attempt t o  model surface occluded frontogenesis 

w i t h i n  evolving cyclone waves, using PE models w i t h  and w i t h o u t  friction: 

the results suggest that the forming or completely formed cold f ron t  does 

"catch up" t o  the warm f r o n t  t o  form a narrow occluded region, as i n  the 

classical occluded front  model, b u t  t h a t  as this occurs the northern end 

of the cold front  weakens. 
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1. Introduction 

As written in the proposal for this project, the objectives of the 

research are twofold: 

1) To tes t  the validity of quasi-geostrophic dynamics, compared t o  

primitive equation dynamics, for modeling the effect of cyclone 

waves on the larger scale flow, and 

To study the formation o f  frontal cyclones and the dynamics of 

occluded frontogenesis. 

2 )  

This project i s  an outgrowth of an NSF project which i s  summarized 

in Mudrick (1982), hereafter known as M82. 

referenced herein will be referred t o  as M with the appropriate date 

following.) 

( P E )  and quasi-geostrophic (QG)  integrations were made for five different 

basic states,  upon which small disturbances were superimposed. The idea, 

expressed in objective 1) above, was t o  see how well the QG integrations 

could simulate the PE results w i t h  emphasis placed upon the changes in 

the zonally averaged fields a t  the end of the disturbance l i f e  cycles. 

For the five cases, the QG model produced changes in the zonally averaged 

buoyancy t o  similar t o  the PE model, b u t  the differences were judged t o  

be significant. 

stabilized the lower atmosphere while the QG average lapse rate i s  

constrained t o  be constant i n  time. 

potential temperature. The models will be referenced below). The PE and 

(All Mudrick papers 

In t h a t  project, parallel channel model primitive equation 

The main difference was that the PE disturbances 

(Buoyancy i s  dynamically similar t o  

QG zonally averaged eddy heat and momentum fluxes were averaged over the 

disturbance l i f e  cycles and were compared. 

similar than the momentum fluxes. The M82 findings suggested "the 

feasibil i ty of basing parameterizations of cyclone waves on the 

The heat fluxes were more 
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quasi-geostrophic eddy heat fluxes," but it was acknowledged that the 

task would be difficult and several caveats were included as to the 

ability of QG dynamics to simulate PE cyclone wave evolution. 

A similar study, parallel to the M82 work was reported by MacVean and 

James (1986), using PE and QG spherical, spectral models. Their models 

were adiabatic, except for diffusion operators, as are the models used in 

M82. They studied several cases, comparing PE and QG life cycles. Their 

results are similar to those in M82 but their conclusions concerning the 

ability of the QG dynamics to simulate the PE dynamics were less 

optimistic. 

fluxes which were emphasized in M82. 

larger and the heat fluxes weaken toward the latter part of the life 

cycle and since (in both M82 and MacVean and James, 1986) the momentum 

fluxes can be significantly different for the PE and QG models, varying 

irregularly from case to case, they concluded "the use of QG rather than 

PE dynamics to parametarize the total effects of baroclinic waves in low 

resolution long term integrations would lead to significantly different 

model climatologies." Thus the two studies found similar results but 

placed different emphases on them. 

They emphasized the momentum fluxes rather than the heat 

Since the momentum fluxes become 

Both studies mentioned above used fairly simple, smooth basic 

states. How much different would the result be if a realistic frontal 

zone were present in the basic state? 

zone was one of the main purposes in carrying out this study, as 

evidenced in the title. The chief goal of the project was to carry out 

objective 1) above for basic states within which frontal zones were 

present, the idea being that frontal cyclones would develop in both the 

PE and QG models. 

Indeed, the addition of a frontal 
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It was also realized that surface friction should be included in 

both models if surface fronts were to be present initially. Adding 

friction to the PE model was straightforward; it had been done for some 

o f  my Ph.D. work, but due to the he nature of the QG model and due to 

time constraints, friction was never added to the QG model. Thus a1 1 

PE/QG comparisons discussed in this report (and all such comparisons in 

M82) involve frictionless cases. 

Friction was added to the PE model for various runs. This increased 

the realism of the occluded region as the cyclone matured. The formation 

of the "occluded front" within a cyclone was studied, based on these 

friction runs, allowing objective 2) to be carried out. 

This report will be organized in a manner similar to M82. Details 

of the model and the initial states discussed here will be referenced and 

results will then be presented. 

2. Model details 

The PE and QG models used here are restricted to dry, hydrostatic, 

adiabatic mot on and the Boussinesq approximation is made. 

atmosphere is simulated by an east-west re-entrant channel with rigid 

horizontal ani vertical boundaries, located on a mid-latitude beta plane 

with no orographic features. For the PE/QG comparison cases the flow is 

inviscid except for short wave filters and the damping implicit in the 

Lax-Wendroff-like second order accurate scheme. 

equations and models are referenced in M82; details of the friction in 

the PE model are discussed in M87. The PE model contains a convective 

The 

Details of the PE and QG 



4 

adjustment scheme designed t o  keep the model atmosphere from having 

reg ions o f  lapse r a t e  g rea ter  than dry  ad iabat ic ;  the  scheme i s  discussed 

i n  M76.  

3 .  I n i t i a l  s ta tes  

A l l  t he  bas ic  s ta tes  used here are s i m i l a r  i n  s t ruc tu re  t o  those 
2 discussed i n  M 8 2 ,  sec t ion  4. 

there. Di f ferences w i l l  be discussed i n  the  Results sec t ion  below. 

Tables 1 and 2 present data fo r  basic s t a t e  I - N ( O ) ,  discussed i n  M 8 2  (and 

re fe r red  t o  as run 2 there) ,  as w e l l  as f o r  th ree  o the r  s i t ua t i ons :  

I-N(O)FZ, the  I -N(0) case w i t h  an i n  t i a l  E-W surface f r o n t a l  zone 

present; PL/CC, a case designed t o  s mulate the reg ion  w i t h i n  which 

"po la r  lows" and "coma clouds" tend t o  form ( t h i s  case i s  the bas is  f o r  

M87) and 2-Wave, a bas ic  s t a t e  s i m i l a r  t o  I -N(0) bu t  w i t h  two small 

amplitude, normal mode disturbances present i n i t i a l l y ,  a long wave and 

two s h o r t  waves. These cases w i l l  be discussed i n  d e t a i l  below. Tables 

1 and 2 are s i m i l a r  t o  Tables 1 and 2 o f  M82.  

A l l  possess the  s i n  y s t r u c t u r e  mentioned 

I n  a d d i t i o n  t o  the  bas ic  states mentioned, a "s t rong f r o n t ,  s t rong 

j e t ' '  case was used f o r  PE /QG comparison in teg ra t i ons .  

was designed t o  s imulate a r e a l i s t i c ,  s t rong j e t  w i t h  an associated 

f r o n t a l  zone extending throughout the depth of the  troposphere. This  

case, wh i l e  n o t  appearing i n  the tables, w i l l  be discussed i n  the  Results 

sect ion.  

This bas ic  s t a t e  

The i n i t i a l  per tu rba t ions  were found and were added t o  the  bas ic  

s ta tes  t o  form the i n i t i a l  condi t ions f o r  the  PE and QG runs as 

referenced i n  M82. A l l  the  runs discussed here, unless ind icated,  used 

the INT f i l t e r  described i n  sec t ion  6 of M82.  
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4. Energet ics 

Sect ion 5 of M82 describes and def ines the energet ics  expressions 

used here. As i n  t h a t  paper, the  QG energet ics  forms are used t o  

descr ibe bo th  the PE and QG output, a l though they are fo rma l l y  v a l i d  on l y  

f o r  the  QG model. We w i l l  discuss the zonal ava i l ab le  p o t e n t i a l  energy 

ZAPE, the  zonal k i n e t i c  energy ZKE, and the eddy energy EE made up o f  the  

eddy a v a i l a b l e  p o t e n t i a l  energy EAPE p lus  the  eddy k i n e t i c  energy EKE. 

5. Resul ts 

A summary of the  r e s u l t s  o f  t h i s  p r o j e c t  appears a t  the beginning o f  

t h i s  r e p o r t  as we l l  as a t  the  end o f  t h i s  sect ion.  This sec t ion  w i l l  be 

organized as fo l lows:  The f i r s t  po r t i on  w i l l  be concerned w i t h  the  PE/QG 

comparisons. This p o r t i o n  w i l l  f i r s t  d iscuss s i t u a t i o n s  where surface 

f r o n t s  were present when the  cyclones began t o  evolve. 

s ta tes  w i l l  be discussed. The next p o r t i o n  w i l l  discuss PE runs on ly  and 

w i l l  deal w i t h  occluded frontogenesis. The r e s u l t s  w i l l  be summarized 

and imp l i ca t i ons  w i l l  be discussed. 

Then o ther  basic 

A. PEjQG Compar i sons 

There are f o u r  bas ic  s ta tes  tha t  w i l l  be discussed here; i n  a d d i t i o n  

the  I-N(0) case f r o m  M82 w i l l  be referenced. Tables 1 and 2 i n  t h i s  

r e p o r t  g ive  d e t a i l s  o f  these cases; the  one case no t  i n  the tab les,  t he  

"s t rong f r o n t ,  s t rong j e t "  case, w i l l  be descr ibed below. 
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I .  Adding fronts t o  the basic state. 

We will f i r s t  discuss attempts t o  model "frontal wave cyclones", 

i.e. those cyclones evolving on a pre-existing f ronta l  zone. 

one of the major aims of the project. 

the "weak front' ' case I-N(O)FZ, the "strong f ron t ,  s t r o n g  je t"  case and 

the "2-wave'' case. 

This was 

Three cases will be described: 

a. The weak front  case, I-N(0)FZ 

T h i s  was the f i rs t  attempt a t  adding  a frontal zone t o  the basic 

state. The hope was t h a t ,  w i t h  the  i n i t i a l  f r o n t a l  zone present, a 

cyclone would form on the front and the evolution o f  a " f ronta l  cyclone'' 

would be modeled. The ini t ia l  f ron t  was quite weak, as discussed below; 

this was done so t h a t  QG dynamics could s t i l l  be argued as being v a l i d  

for a s 

used t o  

the cyc 

low cen 

cyclone 

d i d  not 

udy of the basic state,  since a linear QG model called ZDINIT i s  

determine the structure of the fastest  growing normal mode. As 

one evolved, the front tended t o  weaken i n  the vicinity of the 

e r  so t h a t  the evolution of the low was quite similar t o  the 

i n  the no ini t ia l  f r o n t  case I-N(0). Effectively, the cyclone 

"feel" the presence of the f r o n t  as i t  evolved b u t  due t o  the 

increased s tabi l i ty  i n  the frontal region, the cyclone growth rate was 

decreased. While a frontal cyclone was thus n o t  modeled i n  this case, 

the results are s t i l l  of interest and are now described. 

Basic state I-N(0)FZ is a modification of basic state I-N(0); a weak 

E-W oriented surface f r o n t a l  zone was added. 

hand i n p u t ,  buoyancy ( b )  values i n  the lowest levels ( k = l  t o  3 )  i n  the 

This involved changing, by 
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basic state. The modifications were made to create a sloping, stable 

region with an enhanced N-S b gradient within the region. After the b's 

were modified, the pressure field p was obtained via b = ap/az, the model 

hydrostatic equation, by integrating downward from the known b and p 

values at level k = 4. 

northward, z is upward) we have 

For finite differences (y=jAy, z=kAz; y is 

- AZ b +b - - 
or 'j,k 'j,k+l - ( j,k j,k+l)' 

- 
bj,k+l + bj,k - - pj,k+l pj,k 2 - 
2 AZ 

Program 2DINIT, the 1 inear, two dimensional quasi-geostrophic model that 

determines the structure and growth rate of the most rapidly growing 

normal mode, then proceeds as before, using the p field. j ,k 
Without the front present, the maximum N-S b gradient at k=l, 

dimensionalized, is 1.16°C/100km and the entire baroclinic zone extends 

N-S over about 10 grid distances (1500km). With the front present, the 

maximum value is 1.64"C/lOOkm and the front extends N-S over four grid 

distances (600km). The front is seen to be quite weak. 

The front is added by tightening the b gradient on the cold side of 

the baroclinic zone in the lowest 3 levels, but not reducing the minimum 

b value for any level (level 1 more so than level 2, level 2 more so than 

level 3). Thus, the average stability N2=36/3z is increased for the 

lower levels of the channel (6 is the y averaged b) . This would reduce 

the growth rate in the quasi-geostrophic 2DINIT model, in addition to the 

reduction due to the relatively stable area associated with the frontal 

zone. N*(z) was thus set equal to the values for the no front case by 

adjusting 6 for the lowest 3 levels. 
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The front added i n  this way consisted of a sloping, stable zone w i t h  

enhanced positive relative vor t i c i ty  on the warm side of the f r o n t ,  

as expected. The reduction of ab/ay nor th  of the co ld  side of the front 

produced a reduction of a u / a z  i n  the same area ( u  i s  the zonal wind 

component), due t o  the thermal wind constraint; since p was gotten by 

integrating downward from level 4, u was unchanged above level 4 and u 

has increased westerly values near the surface, north of  the frontal 

zone. Thus, a second region of positive relative vor t i c i ty  i s  present 

north of the cold front .  T h i s  region d i d  not cause any major problems i n  

subsequent integrations. Table 1 shows t h a t  the minimum Richardson 

number increases i n  the frontal  zone, compared t o  the no f r o n t  case. 

The result of the changes was that for the 3600km length channel 

used, the structure and growth r a t e  o f  the most unstable normal mode 

changed significantly from I-N(0). For I-N(0)FZ the growth rate was 

decreased, the doubling time increased t o  1.47 days as opposed t o  

0.97days for the unmodified basic state (see Table 2 ) .  

perturbations grow v i a  the mixed mode process, b o t h  ZAPE and ZKE being 

converted t o  EE.  The no front disturbance has i t s  maximum disturbance 

amplitude a t  j e t  level and i s  more or less symmetric around a vertical 

axis beneath the je t .  The f ront  disturbance has i t s  maximum amplitude a t  

the bottom, on the f ron t ,  and the maximum slopes upward and northward 

toward the j e t  core. 

reasonable since the region o f  several grid distances across has 

significantly greater stabil i ty due to  the presence of  the f ron t .  

atmosphere, a f ront  i s  perhaps lOOkm or less i n  thickness; here i t  i s  

greater t h a n  600km. 

disturbance was added to  the basic s t a t e ,  and the i n i t i a l  d a t a  were 

Both 

The reduced growth rate for the f r o n t  case i s  

In  the 

Having gotten the normal mode structure, the 
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"balanced" (see M74, p873). 

amp1 i tude of 10% were used, simi lar to run 2 in M82. 

in this manner; a QG run was also made, similar to 

the QG no front run (run 2) in M82. 

days. 

The INT filter and initial disturbance 

The PE run was made 

Both runs were carried out to eleven 

In addition to the above non friction runs, the PE model was also 

integrated with two types of friction, a surface stress only and a more 

complete vertical diffusion form o f  friction. These results will be 

discussed later in the "surface occluded frontogenesis" section. 

A comparison of the PE and QG front cases is somewhat similar to the 

comparison of the PE and QG cases of run 2 discussed in M82, with some 

notable differences as discussed below. A more detailed discussion is 

planned for a forthcoming paper. 

The energetics behavior for the I-N(0) and I-N(0)FZ runs is shown in 

Note they are similar, except that the PE front run takes Table 3. 

longer to reach a maximum in EE and to complete a life cycle (64 days, 

%lo days) than does the PE no front run (4.6 days, 8 days). 

QG front run is more similar to the QG no front run (63 days, -14 days 

for the front case, 6.4 days, 14 days for the no front case). 

that, with respect to the gross energetics behavior, the QG run is less 

affected by the presence of the front than is the PE run, which is 

significantly stabilized. 

disturbances evolve more quickly than do the QG disturbances. 

probably due to the fact that the PE model stabilizes the buoyancy field 

(relative cooling at the channel bottom and warming above) as the 

disturbance evolves while the QG model is constrained to have an 

unchanging stability. Thus, the PE buoyancy stabilizes with time and the 

perturbation completes its life cycle sooner than for the QG case. 

However, the 

It appears 

For both front and no front cases the PE 

This is 
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W i t h  respect t o  the zonally 

momentum (time averaged over the 

d a t a  for the I-N(0) and I-N(0)FZ 
x t  

and time averaged fluxes of heat and 

respective l i f e  cycles) Table 4 presents 

cases. Consider f i r s t  the hor izonta l  

heat f l u x  Fv' All PE and QG runs, no front and front, have 

northward fluxes w i t h  the maximum a t  the channel bottom (level k = l ) .  All 

have a weaker, southward f l u x  in the lower stratosphere (level k = 8 ) ;  due 

t o  the r i g i d  t o p  this may be an unrealistic feature. 

stronger t h a n  the QG fluxes i n  both the f r o n t  and no front cases. 

the PE and QG fluxes t i l t  northward w i t h  height, the PE more so,  for the 

front  case, whereas fo r  the no front case, the PE has a s l i g h t  northward 

t i l t  w i t h  the QG being vertical and nearly symmetric abou t  a vertical 

axis beneath the j e t  core. T h u s ,  the front case removes the symmetry 

from the QG run .  In general the QG f l u x  i s  more similar t o  the PE f l u x  

for the f ront  case t h a n  for the no f r o n t  case. 

The PE fluxes are 

Both  

x t  
Next consider the horizontal time averaged momentum f l u x  u ' v i  . 

In general, the momentum fluxes tend t o  be less similar t h a n  are the heat 

fluxes, as pointed o u t  by M82 and by MacVean and James (1986). 

fluxes for the front and no front cases are qualitatively quite similar. 

Both are directed southward. 

the upper level maximum being three gridpoints southward of the lower 

level maximum. The maxima are a t  the same location fo r  b o t h  cases. The 

f r o n t  case has the absolute maximum a t  level 7 while the no f r o n t  case 

has i t  a t  k = l .  The QG flux for the f r o n t  case is  qualitatively somewhat 

similar, albeit less t h a n  half as strong, w i t h  a nearly a l l  southward 

flux possessing two maxima a t  levels 1 and 7.  

one g r i d p o i n t  southward of the lower level maximum. 

weaker northward f l u x  north of the j e t  a t  level 9 near the top .  

The PE 

Both have maxima a t  levels 1 and 7,  w i t h  

The upper level maximum i s  

There i s  a region of 
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The QG momentum f l u x  for the no front case i s  quite different than 

the PE no f ront  f l u x .  

a x i s  beneath the zonally averaged j e t  core. 

directed maximum south of the j e t  a t  level 7 ,  similar t o  the other cases, 

b u t  there i s  a northward directed maximum a t  level 1, below this. No 

other case has a northward directed momentum flux a t  level 1. North of 

the vertical axis  there i s  a northward maximum a t  level 9 and a weak 

southward directed maximum a t  level 4.  

than their  PE counterparts. 

over twice as strong as the QG maximum; for  the no f r o n t  the r a t i o  i s  

cl oser t o  four.  

This QG f l u x  is roughly symmetric about  a vertical 

There i s  a southward 

B o t h  QG fluxes have maxima weaker 

For the front case, the PE f l u x  maximum i s  

As f o r  the heat fluxes, the presence of an i n i t i a l  f ron ta l  zone has 

removed the vertical symmetry about the j e t  i n  the QG r u n  and more 

realist ic results for the QG model, compared t o  the PE model, are noted 

when the fluxes are compared. 

The QG results are seen t o  be more like the PE results f o r  the f r o n t  

case, as opposed t o  the no f r o n t  case. This i s  true for b o t h  the time 

averaged heat and momentum fluxes. I t  i s  also true for horizontal  

patterns of pressure and buoyancy (the "synoptic" maps n o t  shown here) 

f o r  level k = l ,  the lowest level in the model. Without the i n i t i a l  

surface f ront  the QG L and H develop i n  a manner similar t o  one another. 

A near "symmetry" is seen around an E-W oriented line a t  the center of 

the channel, i n  t h a t  the low (L )  looks like the h i g h  ( H ) .  The "f ronta l  

t rough" associated w i t h  the L looks like the f ronta l  "ridge" associated 

w i t h  the H. This behavior can be seen i n  Figs 3C and 1 O C  o f  M74. Also, 
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for the  QG no f r o n t  case, a snake-like meander forms for the "frontal 

zone", similar t o  Fig 3D i n  M74, w i t h  the southward moving cold a i r  

region of similar size t o  the northward moving warm a i r  region. 

When the frontal  zone case is  considered, the QG symmetry i s  broken 

a t  the s tar t .  A strong H appears by day 2 compared t o  the weak, small L 

and the tightening " f ron ta l "  gradient looks more like a PE than a QG 

model - the cold tongue associated with the H i s  broad, compared t o  a 

narrow warm tongue associated w i t h  the L. By day 6 the L has grown in 

size similar t o  the H,  b u t  the frontal t r o u g h  extending southward from 

the L i s  s t i l l  sharper t h a n  the ridge extending northward from the H 

center. As time proceeds, the L and ti become more similar, as in no 

front QG runs, b u t  for the f i r s t  6 days o r  so the QG model looks quite 

like a PE r u n .  

For level k=5, above the level where the f ron t  was inserted into the 
_. basic state,  the QG front and no front runs are more simiiar. 

case i s  less "symmetric" about  the mid-channel ( i n  the manner discussed 

above) t h a n  as the no f ront  r u n ,  bu t  both are quite similar. 

The f r o n t  

The major differences a t  the lower levels a re  due t o  changes in the 

QG potential vorticity field t h a t  come about when the f r o n t  i s  added. 

The QGPV i s  nearly symmetric (about the E-W mid-channel line, except for 

the increase of the Coriolis force northward) f o r  the no f r o n t  case. 

presence of the f r o n t  produces the asymmetry. 

conserved following QG motion, the distribution of this field i s  of 

central importance in the QG integrations. A forthcoming paper i s  

planned t h a t  will discuss this evolution in some detail; figures will be 

presented. 

The 

Since the QGPV i s  
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In conclusion, the presence o f  an initial, albeit weak surface 

frontal zone breaks the "symmetry" in the QG basic state. 

QG evolution is more similar to its PE counterpart than is the no front 

QG integration. 

The resulting 

Thus, it may be that with the use of more realistic 

initial states, compared to idealized situations used in M82, the QG 

model may better simulate the PE evolution. The conclusions in M may be 

strengthened somewhat, compared to the more pessimistic comments of 

MacVean and James (1986), regarding the use of QG dynamics to similate PE 

effects. The results from other cases to be discussed below, however, 

will conflict with this. 

b. Strong front, strong jet case. A stable situation. 

A second attempt at modeling a frontal cyclone was made by adding a 

The basic state for strong, narrow, deep frontal zone to a basic state. 

this case consisted of a strong polar front jet with an associated 

frontal zone extending throughout the troposphere. The situation is 

somewhat similar to Fig 8.2, p 198 in Palmen and Newton (1969). The main 

point is that a relatively strong, narrow, sloping frontal zone extends 

throughout the troposphere, in association with a strong, narrow, 

cyclonically skewed jet stream. It has been speculated that such 

situations can preceed explosive mid-tropospheric cyclogenesis (Shapiro, 

1970). 

Three full three-dimensional integrations were made for an 1800km 

long channel, using this basic state; two were PE integrations; one was a 

QG. The QG and one of the PE utilized a 5% amplitude "normal mode'' 

disturbance, the other PE integration used a "barotropic" (i.e. no 
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variation in z) perturbation of 5% amplitude for the initial disturbance. 

The ''normal mode" structure was determined by a linear, QG 2-D model 

(2DINIT) but the structure's validity is questionable due to 1) the 

, extreme shears and large vorticity in the basic state, probably 

invalidating the QG assumption used in 2DINIT, and 2) a possible error in 

the 2DINIT calculation for this particular situation. These runs used 

the JCP filter (See M82). 

At any rate, the basic state proved to be stable, at least for the 

1800km channel. 

any of the runs, out to 7 days. 

speculation by Palmen and Newton (1969, p 338) that I' a frontal layer 

extending through the entire troposphere i s ,  at least in some cases, a 

characteristic acquired by a cyclone during, rather than prior to, its 

development." 

No significant growth of the perturbations occurred, for 

This result may be consistent with 

This case demonstrated that both PE and QG models could produce a 

"null" result for a given basic state. 

c. A third attempt - a frontal cyclone - the "2-Wave" runs 

The "2-Wave" basic state summarized in Tables 1 and 2 will be 

described below. 

stress included. 

front, itself having formed as a result of earlier cyclone development. 

This frontal cyclone develops as a short wave and associated jet streak 

propogate around a long wave trough at mid-levels. The frontal cyclone 

evolves; as it does so the front deforms and occludes. This was the 

first (and only) "polar front cyclone" produced during work performed for 

this project. 

It was run originally on the PE model, with surface 

After day 7, a surface low forms on a pre-existing cold 
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A PE run. w i t h o u t  f r i c t ion ,  and an associated QG run were then made 

i n  an attempt t o  provide a frontal cyclone case for a PE/QG comparison. 

Unfortunately, the f ron ta l  cyclone d i d  no t  form i n  these cases; a 

secondary surface low associated w i t h  the short wave trough approached 

the cold f ront  from NW of i t ,  rather than  forming on the cold front.  

Also, the evolution and movement o f  this secondary low was significantly 

different for the PE and QG models so a comparison of the runs, a t  least 

w i t h  respect t o  surface development, was n o t  made. 

d.  Summary of attempts t o  add surface fronts t o  the PE/QG comparisons 

For the three situations described above, only the weak front case 

produced a PE/QG comparison, and t h a t  case showed t h a t  the QG model 

simulated the PE evolution even better than for the situation w i t h  no 

surface f ront  present init ially.  The strong f r o n t ,  strong j e t  case 

produced a PE/QG comparison, b u t  neither model produced a growing 

solution. 

interesting case of the "frontal cyclone'' t h a t  appeared i n  the PE 

friction r u n  d i d  not  reoccur i n  the  same manner i n  the PE/QG comparison 

w i t h  no friction. 

The 2-Wave case produced a PE/QG comparison, b u t  the 

I t  m i g h t  be possible t o  use as i n i t i a l  d a t a  the 2-Wave PE case w i t h  

friction a t  day 6. This could  be run w i t h  the PE and QG no f r i c t ion  

models. Then the PE/QG comparison would be starting w i t h  very similar 

ini t ia l  da t a  and the frontal  cyclone might  be expected t o  form by day 2 

o r  so i n  these runs. In order t o  do this,  a program would need t o  be 

developed t o  modify the PE pressure pattern t o  confirm t o  the lateral 

boundaries required by the QG model; this has n o t  been done. 
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. Thus, based mainly on the  "weak f r o n t "  case, we can conclude t h a t  

t he  a d d i t i o n  o f  a f r o n t a l  zone t o  the basic s ta te ,  which otherwise i s  

s i m i l a r  t o  the  bas ic  s ta tes  s tud ied i n  M82, does n o t  adversely a l t e r  t he  

a b i l i t y  o f  t he  QG model t o  simulate the  PE evo lu t ion .  I n  fac t ,  f o r  t h i s  

case t h e  QG model does a b e t t e r  j o b  s imu la t i ng  t h e  zonal and t ime 

averaged PE momentum and heat f luxes than i n  the  no f r o n t  bas ic  s t a t e  

case. 

11. Other basic s ta tes  

I n  keeping w i t h  o b j e c t i v e  1) i n  the  p ro jec t ,  basic s ta tes  o ther  than 

those mentioned above were r u n  f o r  PE/QG comparisons. 

d i d  n o t  inc lude a f r o n t a l  zone i n  the basic s ta te.  The two cases 

described below both are o f  s i m i l a r  s t r u c t u r e  as t h a t  shown i n  F i g  1 o f  

M82, as i s  I -N (O) ,  b u t  t he  d i f fe rences  w i l l  be emphasized. We r e f e r  t o  

them as the  "PL/CC" case and the  "2-Wave" case. The former uses a 

c y c l o n i c a l l y  skewed j e t ,  b u t  the major a d d i t i o n  i s  a l a y e r  of reduced 

s t a b i l i t y  i n  the  lowest 3km of t he  channel. 

a re  described i n  M87; t he  bas ic  s ta te  was chosen t o  s i m i l a t e  cond i t ions  

w i t h i n  which p o l a r  lows/comna clouds tend t o  develop over oceanic 

regions. The lowest l a y e r  simulates the  e f f e c t  o f  d e s t a b i l i z a t i o n  from 

below by sens ib le  heat f l u x e s  upon an equatorward moving p o l a r  a i r  mass. 

The l a t t e r  basic s t a t e  i s  more s i m i l a r  t o  I-N(0) b u t  i t  had superimposed 

upon i t  both a long wave o f  5200km and 2 s h o r t  waves o f  2600km i n  the  

i n i t i a l  s ta te ;  these two normal modes were such t h a t  the  sho r t  waves 

would grow more r a p i d l y  and propogate eastward w i t h  respect t o  the  long 

wave. 

These s i t u a t i o n s -  

The basic s t a t e  and d e t a i l s  
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a .  The PL/CC case 

The details of the integrations are presented in M87. The tables 

provided in this project report give information on the parameters used. 

We will concentrate on the "coarse resolution" runs having 14, 38 and 10 

g r i d p o i n t s  in the east, nor th  and vertical directions, respectively. 

horizontal resolution i s  Ax, Ay = 100km, which seems quite good, b u t  the 

channel length i s  only 1200km in order t o  simulate small scale polar  

lows, so even east-west wave number 2 is  reduced t o  a six grid interval 

wave. 

1.25 x 10 

The 

Tne channel is centered a t  60"N w i t h  a Coriolis parameter of 

being used a t  the channel center. -4 ,-1 

T h i s  case produced a rapidly growing, shallow disturbance (somewhat 

deeper in the PE r u n )  t h a t  reached a maximum EKE in 1.2 days for the P E ,  

1.8 days for the QG run, and then reached a relative minimum i n  EKE a t  

2.4 days for both  runs. 

days. 

the doubling time is % 0.25 days. This i s  quite rapid development for 

b o t h  PE and QG models. The period of init ial  growth occurs by baroclinic 

conversion of potential t o  eddy kinetic energy; d u r i n g  the second p a r t  o f  

the l i f e  cycle the eddy kinetic energy i s  converted t o  zonal kinetic 

energy. As in other cases, the PE model stabilizes the lowest portion o f  

the channel (relative cooling of the buoyancy field a t  k= l ,  compared t o  

the QG run; relative warming a t  k = 2 ) .  As in most cases cited above and 

as in M82, the PE EKE reaches a maximum before the QG. 

Thus ,  the l i f e  cycle occurs quickly, i n  2.4 

Dur ing  the in i t ia l ,  linear stage of growth which lasts % 1/2 day, 

Table 3 presents a PE vs QG energetics comparison fo r  the PL/CC case 

as well as  f o r  the otner cases. 

poorly fo r  the PL/CC case. 

The PE and QG energetics compare most 

This is due t o  the presence of the shallow 
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layer of reduced stabil i ty i n  the basic state and due t o  the fact t h a t  

the disturbances are very shallow. The stabilization process in the 

PE model significantly increases the lower level Bxy while this does 

not change for the QG model. This factor makes a major difference in 

computation of the ZAPE and the EAPE which i s  par t  of the EE (see Fig. 2 ,  

p 2420 in M82). Since the disturbances grown mainly in this shallow 

region, the effect is  greatly magnified and hence the EE and ZAPE values 

differ so greatly in Table 3. Yet, as  mentioned above, consideration of 

the EKE shows b o t h  PE and QG undergo l i f e  cycles of  2.4 days. 

Z 

W i t h  respect t o  the zonally averaged fluxes o f  heat and momentum, 

the PE and QG structures are similar b u t  they differ in magnitude. 

During the growth stage for both  models, the heat fluxes are similar, 

being northward and shallow, with the QG flux roughly twice as s t rong as 

the PE flux. 

being shallow and directed southward w i t h  the maximum being beneath the 

j e t  core. 

During this stage the momentum fluxes also are similar, 

The PE momentum flux is about  twice as strong as the QG f l u x .  

During the decay phase of the l i f e  cycle the PE and QG fluxes are 

similar b u t  they differ in relative strength. The heat fluxes remain 

quite shallow, b u t  nor th  of the region of northward heat flux there i s  a 

stronger region of southward heat f l u x .  

i s  abou t  three times stronger t h a n  the PE flux. 

during the decay stage are similar, remaining shallow with a convergence 

o f  flux beneath the j e t  core. Thus,  both models produce a northward 

directed f l u x ,  north of which is a southward directed f l u x .  

model the southward directed region i s  twice as strong as the northward 

directed region while i n  the PE f lux  the northward directed region i s  a 

l i t t l e  stronger than the southward directed region. Both  fluxes during 

The QG f l u x  during this stage 

The momentum fluxes 

In the QG 
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the early decay stage are about  t he  same strength b u t  the QG flux becomes 

stronger as the PE flux weakens, so overall the QG flux i s  stronger. 

the fluxes are similar in structure b u t  different in magnitude over the 

l i f e  cycle. 

So 

Now consider the zonally and time averaged (over the 2.4 day l i f e  

cycle) fluxes. Table 3 gives values. 

cases, the time averaged heat fluxes are shallow and northward, b u t  

unlike the previous cases, for the PL/CC cases the QG heat flux i s  about  

four  times the strength of the PE heat flux. 

southward maximum a t  level k=5; t h e  QG does not .  

momentum fluxes are somewhat similar, b u t  less similar t h a n  the 

heat fluxes, as was true for the front and no f r o n t  cases. 

Like the weak front and no f ron t  

The PE heat flux has a weak 

The time averaged 

Both have a 

mum a t  level k = l  and b o t h  have a secondary weaker 

mum aloft. The QG momentum flux i s  about  twice as  

southward directed max 

southward directed max 

strong as the PE flux. 

The result of  the action of the fluxes is  t h a t  a t  the end of  the 

l i f e  cycle the PE and  QG zonally averaged buoyancy and zonal wind fields 

differ significantly a t  the lowest levels. For the zonally averaged 

zonal wind ,  the QG has developed a s t rong  westerly j e t  a t  level k = l ,  

nearly beneath the j e t  core. 

level 2 ,  above which the wind speed increases w i t h  height u p  t o  the j e t  

core. This surface westerly j e t  i s  flanked by easterly je ts .  The PE 

zonal wind has a k = l  westerly component beneath the j e t  core, b u t  i t  i s  

less than half the strength of  the QG k = l  westerly wind and the wind 

increases everywhere with height for the PE model. There are flanking 

easterly surface je t s  for the PE as fo r  the QG model, b u t  the QG easterly 

je ts  are stronger. 

This westerly j e t  decreases in strength t o  



20 

The zonally averaged buoyancy fields likewise are different a t  the 

lowest levels. 

l i f e  cycle i s  broader and weaker than  a t  the s tar t .  

a relatively cold region sou th  o f  a relatively warm region under the j e t  

core. Thus  the buoyancy increases northward a t  level 1 in the same 

region where the westerly wind decreases w i t h  height. A similar region 

does n o t  appear in the PE field. 

The k = l  PE horizontal buoyancy gradient a t  the end of the 

The QG k = l  field has 

The PL/CC case produces a quite shallow disturbance growing mainly 

The PE model stabilizes this in a shallow region of reduced stability. 

region as the disturbance evolves while the QG model cannot, and the 

resulting QG/PE differences a t  the lowest levels are more pronounced i n  

this case t h a n  in any of the other cases. 

b. The 2-Wave case 

In an attempt t o  increase the complexity of the basic states for  

PE/QG comparisons (and hence t o  increase the realism), I decided t o  

attempt t o  model the upper tropospheric interaction of a shortwave 

propagating through a long wave. 

(associated with a short wave t r o u g h )  as i t  propagates downstream from 

the long wave ridge and around the long wave t r o u g h .  

seem t o  be associated with upper level frontogenesis (see Keyser and 

Pecnick, 1985, p. 1260, for example). 

I could then model a j e t  streak 

Such situations 

I decided t o  model this situation by adding two perturbations t o  a 

zonally independent basic state, both normal mode solutions found a s  

previously described. The f i r s t  perturbation (the long wave) had a 
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wavelength equal t o  the channel length; the second (the short wave) had a 

wavelength equal t o  half the channel length (so two short waves are 

present in i t ia l ly) .  Waves 1 and 2 were added t o  the basic s ta te  i n  this 

manner. 

A basic s ta te ,  different than the "polar low" basic state discussed 

previously, needed t o  be chosen so t h a t  the following cr i ter ia  were 

satisfied: 

1) 

2) 

the short waves would grow more rapidly t h a n  the long wave, 

the short waves would propagate eastward more rapidly t h a n  the 

long wave and 

b o t h  long and short wave disturbance amplitudes would be 

relatively '!deep," i .e., they would possess large disturbance 

ampl itudes a t  j e t  stream level. 

3) 

The  third criterion hopefully allows deep surface frontal zones t o  

form and favors more vigorous upper tropospheric activity including 

frontogenesis i n  the PE model runs. 

After several modifications, a basic state was found t h a t  produced 

satisfactory results. I t  was similar in structure t o  I-N(0). The 

channel length was chosen t o  be 5200km (so waves 1 and 2 possessed 5200km 

and 2600km wavelengths, respectively), the width 6066 2/3km; with 26 

gridpoints E-W and 30 N-S the g r i d  resolution Ax, Ay = 216 2/3km, a 

coarse resolution, especially compared t o  the polar low simulations. 

Again 10 vertical levels were present. 

B o t h .  perturbations were superimposed, with small ampl i tudes, on the 

zonally independent basic s t a t e :  

component was set  t o  be 10% of the maximum zonal basic s ta te  wind  value. 

The in i t ia l ly  small perturbation amplitudes allow the early growth and  

the maximum N-S perturbation wind 
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movement of the waves to  be compared t o  l i nea r  theory. 

balancing" was included for  the PE runs, instead, the i n i t i a l  wind and 

buoyancy f i e l d s  were derived from the nondivergent stream function via 

the geostrophic and hydrostatic approximations , respectively,  as is done 

routinely f o r  the QG model. 

No " i n i t i a l  

Several runs were made, w i t h  and without f r i c t ion  fo r  the PE model 

and a l l  without f r i c t ion  by the QG model. We will discuss here only the 

f r i c t ion le s s  PE and QG runs; a PE run w i t h  surface s t r e s s  will be 

discussed below. 

were located i n  the long wave ridge and t rough.  

runs, the short  waves propagated eastward r e l a t ive  to  the long waves and 

short  waves d i d  indeed propogate through the long wave trough, on days 4 

t o  5 and again a t  approximately days 8 to  9. 

the long wave and only the short  waves also were carried out t o  shed 

l i g h t  on the wave interactions i n  the 2-Wave runs. 

For a l l  these runs, the short  wave troughs i n i t i a l l y  

For both the PE and QG 

PE and QG runs w i t h  only 

These runs are  being analyzed and papers are  planned. A Masters 

thesis is  being written based upon the short  wave - long wave 

interact ions occurring a t  days 4 and 5.  

will discuss the energetics and time averaged f l u x  comparison f o r  the PE 

and QG runs. 

What follows i n  this section 

Both PE and QG runs proceed i n  a "growth" stage to  about day 11. 

During tha t  time, fo r  both models the ZAPE and ZKE decrease while the EE 

increases. (See Table  3 . )  Thus ,  dur ing  this time the disturbances i n  

the channel a re  growing both by the baroclinic and barotropic i n s t a b i l i t y  

processes. 
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After day 11, a reversal occurs with EE decreasing while ZKE and 

ZAPE increase. This continues to day 14 in the PE model, thus a "life 

cycle" is observed in the PE energetics as described in M82. 

run the behavior is similar to the PE run after day 11 except no 

significant increase in ZAPE occurs and the EE does not decrease as much 

as in the PE run. 

less clearly in the QG model. During the entire 16 days of integration, 

the magnitudes of the PE and QG energy values are quite similar. 

two independent disturbances are present, the above says little about the 

individual disturbance life cycles. 

For the QG 

Thus a decay stage is clearly seen in the PE modef, 

Since 

The zonally averaged fluxes of heat and momentum have been time 

.averaged over the growth stage, days 0-11. 

4. During this time, the horizontal and vertical heat fluxes are quite 

similar for the PE and QG cases, with the QG fluxes being approximately 

10% stronger. 

similar as are the heat fluxes. 

vicinity of the jet, indicative of the growth of the disturbances by 

barotropic as well as barocl inic instability. The vertical momentum 

fluxes are least similar, with the PE flux being downward everywhere 

while the QG flux is upward south of the channel mid-line and downward 

north of the mid-line. 

the 2-Wave run is somewhat similar to that for the runs decreased in M82. 

They are summarized in Table 

The horizontal momentum fluxes are similar, but not as 

Both have a flux divergence in the 

Thus, the flux behavior for the growth phase of 

In summary, a comparison o f  the 2-Wave PE and QG runs show similar 

overall development. Details will be discussed in forthcoming papers. 
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B. PE runs only. Occluded frontogenesis study 

The second major objective of this project was to  study the 

formation of frontal  cyclones and the dynamics of occluded frontogenesis. 

T h i s  requires a study of PE model o u t p u t  only. From archived data gotten 

from PE integrations run  under th i s  and e a r l i e r  projects,  28 cases were 

avai lable  f o r  study. These can be grouped into several categories: 

Runs t ha t  a r e  one wavelength zonally (only one disturbance 

present i n i t i a l l y  i n  the E-W cycl ic  channel), have no f r i c t ion  

and begin w i t h  no surface f ront  added t o  the basic s t a t e  

2 )  As i n  1) b u t  an added weak E-W f rontal  zone present i n i t i a l l y  

3)  As i n  2) b u t  possess some form o f  surface f r i c t ion  

4 )  As i n  1) b u t  have some form of surface f r i c t ion  

5) Runs t ha t  a re  more than one wavelength zonally ( i . e .  2 or  3 

disturbances present i n i t i a l l y  along the channel length) , have 

no f r i c t ion  and begin w i t h  no surface front added to  the basic 

s t a t e  

6 )  As i n  5) b u t  surface f r ic t ion  is  present. 

W i t h i n  these categories e ight  d i f fe ren t  basic s t a t e s  have been used, 

1) 

w i t h  varying channel lengths and disturbance s t ructures .  Except f o r  the 

runs from my original Ph.D. thesis  work tha t  possessed 20 ver t ical  levels  

(Az = .75km), a1 1 these runs have 10 levels  (Az = 1.5km). This 

resolution i s  much too coarse to  resolve any ver t ical  s t ruc ture  i n  

surface fronts  t h a t  form, including occluded fronts .  Even the 20 level 

runs do not show any ver t ical  structure,  so the classical  picture of the 

warm occlusion or  the cold occlusion cannot be investigated. 

follows concerns f o r  the most part the horizontal s t ructure .  

What 
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Consider first the runs possessing a weak initial frontal zone, 

categories 2) and 3) which include 4 cases. 

cyclone formed, this front would remain intact but would become 

progressively distorted, and the disturbance would form essentially as a 

frontal wave cyclone. 

the apex of the wave the vertical stability in the front and the negative 

relative vorticity on the cold side of the front decreased, so this 

region of the front lost frontal characteristics except for the buoyancy 

gradient remaining relatively large compared to north and south of the 

region. 

front, especially in the friction runs. Thus, the effect of the front 

being present initially is minimal in the wave apex region as the wave 

amplifies. 

It was hoped that as a 

In fact, as the front distorted into a wave, at 

The buoyancy gradient becomes stronger in other regions of the 

We now turn our attention to the situations where no initial front 

Consider first the cases where only one is present in the basic state. 

east-west wavelength is present, i.e. only one disturbance is present in 

the channel. 

Only 2 cases will be compared here; others will be considered in a 

forthcoming paper on occluded frontogenesis. 

that possess relatively high resolution in some manner: 

(called "T") with Ax, Ay = lOOkm and 20 levels in the vertical (38 

east-west points, 62 north-south, 20 levels) and the fine resolution 

"PL/CC" run with Ax, Ay = 50km and only 10 levels in the vertical (26, 

50, 10). The former contains no friction, the latter has surface stress 

present. Aspects of the former run are discussed in M74, section 5 (pp 

873-878) while aspects o f  the latter are discussed in M87. 

This covers categories 1) and 4) and includes 16 cases. 

We consider here two cases 

a thesis run 
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These situations are quite different yet similar characteristics are 

present with respect t o  the region we can regard as a forming ''occluded 

front." The variables p and b for k = l  fo r  day 4 for "T" are shown i n  

Figs. 3E and 3F of M74, p 872; p and b fo r  k = l  for day 1 for "PL/CC" are 

shown i n  F i g  3b of M87. Both  runs are a t  somewhat similar stages of 

development; the warm, narrow tongue of a i r  representing the center of an 

occluded region i s  present. 

The vorticity i s  shown for these two cases, a t  the times above, i n  

Figs 8A (M74, absolute vorticity, k=2) and Fig 4a (M87, relative 

vorticity, k = l ) .  

tongue, w i t h  relative minima laying on either side of this region, on the 

Both  show a maximum region laying within the warm 

cold sides of the warm and cold fronts flanking the warm tongue. The 

vertical stabil i ty shown in Fig. 88 (M74, k = 2 )  for run T ,  no t  shown fo r  

r u n  PL/CC, has a similar pattern for the two runs; in the regions of the 

cold and warm fronts i t  i s  a relative maximum on the cold side and a 

relative minimum on the warm side o f  the fronts. 

i s  a minimum. 

and there i s  no relative maximum o f  stabil i ty in either run NW in the 

In the warm tongue i t  

Yet the region o f  minimum extends NW into the low center 

region of the warm tongue. 

f ron t"  would be and if  i t  formed in the classical manner w i t h  the cold 

f r o n t  "catching up" t o  the warm front we would expect t o  see "back t o  

back" fronts w i t h  relatively stable regions on either side of the maximum 

This i s  where the NW end o f  the "occluded 

vorticity and maximum buoyancy region. 

two cases the NW end of the occluded front does no t  show this structure 

We can conclude t h a t  f o r  these 

a l though the b fields seem t o  suggest this has happened. (The occlusion 

i s  in the early stages for both these runs a t  these times; other cases 
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have much longer ''occluded f ron t - l i ke "  b pat terns a t  l a t e r  development 

times.) 

F i g  6C (M74, p 876) f o r  run T; i t  i s  n o t  shown f o r  run PL/CC but  the  

p a t t e r n  i s  s i m i l a r :  

tongue the  frontogenesis i s  a r e l a t i v e  maximum (and i n  both cases i s  

s t ronges t  i n  the  sho r t  warm front). Yet i n  both cases i n  the nor thern 

p o r t i o n  of the  warm tongue the  func t ion  i s  negative; parce ls  moving 

through t h i s  reg ion are experiencing f r o n t o l y s i s .  

happening i s  t h a t  w i t h i n  the  h igh  v o r t i c i t y  regions the  warm a i r  has been 

advected northward, c r e a t i n g  the  appearance o f  an occluded f r o n t  region, 

bu t  no frontogenesis has occurred. The c o l d  f r o n t  has no t  "caught up" t o  

the  warm f r o n t .  I n  both of these runs the  warm f r o n t  has formed f i r s t  

and the  c o l d  f r o n t  i s  forming even as the  occ lus ion reg ion i s  developing. 

Other runs have d i f f e r e n t  va r ia t i ons  on t h i s ;  a forthcoming paper on 

occluded frontogenesis w i l l  discuss the  resu l t s .  

d 
The "hor izon ta l  frontogenesis func t ion"  dT (V,, b ) 2  i s  shown i n  

i n  the warm and c o l d  f r o n t  regions SE o f  the warm 

What appears t o  be 

F i n a l l y  i n  t h i s  sec t ion  we turn t o  the cases where more than one 

disturbance appears east-west i n  the channel. 

rea l i sm i n  t h a t  the disturbances can be d i f f e r e n t  f r o m  one another, wh i le  

the "one disturbance i n  a channel" cases e f f e c t i v e l y  represent an 

i n f i n i t e  chain o f  the  same disturbance, due t o  the  c y c l i c  boundaries. 

We w i l l  comment on one o f  these cases here. This was mentioned above as 

a " t h i r d  at tempt - a f r o n t a l  cyclone." This. was a 2-Wave PE run w i t h  

sur face s t ress;  a f t e r  day 7 a f r o n t a l  cyclone evolved as a p re -ex i s t i ng  

c o l d  f r o n t .  

Unfor tunate ly ,  the r e s o l u t i o n  i s  qu i te  coarse (Ax, Ay = 216 2/3km, 10 

l e v e l s  i n  the  v e r t i c a l )  bu t  the development i s  i n t e r e s t i n g  and seems more 

This a l lows f o r  g rea ter  

It was the  on ly  example o f  such a development i n  t h i s  work. 
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like the classical occlusion process t h a n  the previous cases. 

f r o n t  does seem t o  ''catch up" t o  the warm f ron t .  

region of the cold f ront ,  where i t  has paralleled t o  the warm f r o n t  and  

forms the "back half" of the occluded f ron t ,  frontolysis is occurring 

The cold  

Yet i n  the northern 

similar t o  the above cases. This case also will be discussed i n  the 

"occluded frontogenesis" paper. 

Another aspect of the f r ic t ion  runs concerns the type of f r i c t ion  

For most o f  the runs only a surface stress type of  f r ic t ion  was used. 

present (discussed i n  M87). 

k = 2 ,  a t  2.25km, i s  above the t o p  o f  the typical boundary layer. 

having friction only as a drag term a t  level 1 uncouples the lowest layer 

This was done because, w i t h  10 levels, level 

B u t  

somewhat; in some of the cases the warm tongue a t  k = l  undercuts the k=2 

development and the stabil i ty becomes negative i n  the region. So 
ab 

vertical mixing was added to  the friction, as  described i n  Appendix A i n  

M87. This effectively deepens the boundary layer b u t  i t  couples levels 1 

and 2 more t h a n  i n  the surface stress only formulation. The I-N(0) r u n  

was repeated with this more complete form of f r i c t i o n ,  so t h a t  the two 

forms of friction could be compared t o  each other and t o  I -N(0) w i t h  no 

f r i c t ion .  The "occluded frontogenesis'' paper w i l l  comment on the effect 

of the different formulations o f  friction on the occlusion process. 

C. Summary of the results 

To a large extent the results of the PE/QG comparisons i n  this 

project are similar t o  those discussed i n  M82, since the cases used here 

are similar t o  those used i n  M82. 

the PE cases i n  many respects. 

That i s  t o  say the QG runs simulate 

1) The PE cyclone wave evolutions 
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stabil ize the lower troposphere while the QG evolutions cannot.  

PE and QG cyclones evolve through a l i f e  cycle with the QG cycle 

generally lasting longer, and 3 )  

fluxes are similar t o  the corresponding PE fluxes. The heat fluxes 

generally are more similar ( P E  vs Q G )  t h a n  are the momentum fluxes. All 

the above are i n  agreement w i t h  t h e  M82 results. 

2 )  B o t h  

The QG l i f e  cycle averaged eddy heat 

There i s ,  however, a greater diversity i n  the results, given a 

greater diversity i n  the basic states chosen. In some cases, the QG 

fluxes are larger than the corresponding PE fluxes; i n  other cases the 

situation reverses. In M82, the PE fluxes were larger t h a n  the QG 

fluxes. In one case (I-N(0)FZ) , the QG model does a better j o b  of 

simulating the PE r u n  t h a n  for the corresponding M82 case (1-N(0)). 

the other hand, for  the PL/CC case the QG model does more poorly in 

simulating the PE r u n ,  compared t o  other cases. 

basic state apparently i s  stable, b o t h  PE and QG display no significant 

growth of the superimposed perturbation. 

On 

For a case where the 

We must conclude t h a t  as the diversity of cases grows, the QG 

simulations o f  the PE runs must be expected t o  become more varied. 

W i t h  respect t o  the attempt t o  model the formation of occluded 

fronts i n  maturing cyclones using the PE model, given the very limited 

vertical resolution, too  coarse t o  describe the frontal scale, our 

results are v a l i d  only with respect t o  the horizontal  structure of the 

fronts. Even the horizontal resolution i s  quite coarse. The buoyancy 

(temperature) patterns ( n o t  shown) suggest the cold f ron t  "catches up" t o  

the warm front  and a narrow tongue of warm a i r  i s  trapped i n  between. 

Yet examination of the vorticity, vertical stabil i ty and frontogenesis 

function i n  the v i c in i ty  of the ''occluded front'' suggest the warm tongue 
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i s  advected toward the cyclone center and the northern end of  the cold 

f r o n t  undergoes frontolysis during this process. A paper i s  planned on 

this subject. 

D. Implications o f  the results 

A t  the beginning of M82 a discussion of "climate forecast" models 

appeared. 

"wi l l  p a r t i a l l y  depend on the a b i l i t y  t o  simulate or "parameterize" the 

effect upon the surrounding atmosphere of the day t o  day evolution of 

cyclone waves, which cannot  be predicted t o  any degree of accuracy." A 

r u n  of weather associated w i t h  a given climate forecast probably will 

include the growth and decay of cyclone waves of varying sizes and 

strengths. More t h a n  one event w i l l  probably be occurring a t  a given 

time. 

the va l id i ty  of QG dynamics vis-a-vis PE dynamics should be investigated 

for  a variety of situations. As stated i n  the proposal, " I f  the QG model 

i s  found t o  simulate i n  a satisfactory way different types of situations 

expected i n  a sequence o f  weather, we would feel more confident about 

using QG dynamics t o  build parameterization schemes o r  statist ical  

methods t o  simulate the combined effect of such situations." Conversely, 

i f  situations.are found where the QG model does a poor j o b  i n  simulating 

PE model runs, our confidence would drop.  

I t  was pointed o u t  t h a t  the success o f  such long range models 

I t  was therefore suggested i n  the proposal for this project that 

We have added diversity t o  the PE/QG cases used here over those i n  

This suggests t h a t ,  M82. 

i n  the context described above, our confidence i n  the a b i l i t y  of QG 

dynamics t o  simulate the PE dynamics should decrease. 

We have found more diversity i n  the results. 
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In a similar study, MacVean and James (1986) stress the differences 

in the PE and QG eddy momentum fluxes in the la t te r  portion of the 

baroclinic wave l i f e  cycle. They feel t h a t  QG dynamics may not be 

adequate for parameterization of cyclone waves in PE "climate" models. 

Based on my overall results, the I-N(0)FZ case not  withstanding, I must 

concur with MacVean and James (1986). 

dynamics f o r  the above stated purpose, b u t  these results suggest i t  will 

be more difficult  than I previously t h o u g h t .  

I t  may be possible t o  use QG 
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